Akinetic Swept-Source Master–Slave-Enhanced Optical Coherence Tomography

by Manuel J. Marques, Ramona Cernat, Jason Ensher , Adrian Bradu, Adrian Podoleanu, Photonics, 8(5), 141 2021.

This paper presents a different approach for processing the signal from interferometers driven by swept sources that exhibit non-linear tuning during stable time intervals. Such sources are, for example, those commercialised by Insight, which are electrically tunable and akinetic. These Insight sources use a calibration procedure to skip frequencies already included in a spectral sweep, i.e., a process of “clearing the spectrum”. For the first time, the suitability of the Master–Slave (MS) procedure is evaluated as an alternative to the conventional calibration procedure for such sources. Here, the MS process is applied to the intact, raw interferogram spectrum delivered by an optical coherence tomography (OCT) system. Two modalities are investigated to implement the MS processing, based on (i) digital generation of the Master signals using the OCT interferometer and (ii) down-conversion using a second interferometer driven by the same swept source. The latter allows near-coherence-limited operation at a large axial range (>80 mm), without the need for a high sampling rate digitiser card to cope with the large frequency spectrum generated, which can exceed several GHz. In both cases, the depth information is recovered with some limitations as described in the text.