Complex master-slave for long axial range swept-source optical coherence tomography

Using complex master-slave interferometry, we demonstrate extended axial range optical coherence tomography for two commercially available swept sources, well beyond the limit imposed by their k-clocks. This is achieved without k-domain re-sampling and without engaging any additional Mach-Zehnder interferometer providing a k-clock signal to the digitizer. An axial imaging range exceeding 17 mm with an attenuation of less than 30 dB is reported using two commercially available swept sources operating at 1050 nm and a 100 kHz repetition rate. This procedure has more than trebled the range achievable using the k-clock signal provided by the manufacturers. An analysis is presented on the impact that the digitization has on the axial range and resolution of the system.

Group refractive index and group velocity dispersion measurement by complex master slave interferometry

This paper demonstrates that the complex master slave interferometry (CMSI) method used in spectral domain interferometry (SDI) can efficiently be used for accurate refractive index and group velocity dispersion measurements of optically transparent samples. For the first time, we demonstrate the relevance of the phase information delivered by CMSI for dispersion evaluations with no need to linearize data. The technique proposed here has been used to accurately measure the group refractive index and the group velocity dispersion of a strong dispersive sample (SF6 glass), and a weak dispersive one (distilled water). The robustness of the technique is demonstrated through the manipulation of several sets of experimental data.