All-fibre supercontinuum laser for in vivo multispectral PAM of lipids in the extended NIR

In this paper we demonstrate a compact all-fibre, high pulse energy supercontinuum laser that covers a spectral range from 1440 to 1870 nm with a 7 ns pulse duration and total energy of 18.3 µJ at a repetition rate of 100 kHz. Using the developed high-pulse energy source, we perform multi-spectral photoacoustic microscopy imaging of lipids, both ex vivo on adipose tissue and in vivo to study the development of Xenopus laevis tadpoles, using six different excitation bands over the first overtone transition of C-H vibration bonds (1650-1850 nm).

Multispectral photoacoustic microscopy and optical coherence tomography using a single supercontinuum source

In this paper we report on the use of a single supercontinuum (SC) source for multimodal imaging. The 2-octave bandwidth (475-2300 nm) makes the SC source suitable for optical coherence tomography (OCT) as well as for multispectral photoacoustic microscopy (MPAM). The IR band centered at 1310 nm is chosen for OCT to penetrate deeper into tissue with 8 mW average power on the sample. The 500-840 nm band is used for MPAM. The source has the ability to select the central wavelength as well as the spectral bandwidth. An energy of more than 35 nJ within a less than 50 nm bandwidth is achieved on the sample for wavelengths longer than 500 nm. In the present paper, we demonstrate the capabilities of such a multimodality imaging instrument based on a single optical source. In-vitro mouse ear B-scan images are presented.